Electron-paramagnetic-resonance spectroscopy studies on the dissimilatory nitrate reductase from Pseudomonas aeruginosa.

نویسندگان

  • C Godfrey
  • C Greenwood
  • A J Thomson
  • R C Bray
  • G N George
چکیده

Preparations of nitrate reductase in the resting state from Pseudomonas aeruginosa exhibit an Mo(V) e.p.r. signal. Progressive reduction of the enzyme results at first in the intensification and then in the disappearance of the signal. Three different species of Mo(V) were detected by e.p.r. These are the high-pH species (g1 = 1.9871; g2 = 1.9795; g3 = 1.9632) and nitrate and nitrite complexes of a low-pH species (respectively g1 = 2.0004; g2 = 1.9858; g3 = 1.9670; and g1 = 1.9975; g2 = 1.9848; g3 = 1.9652). These signals are closely analogous to those for the enzyme from Escherichia coli described by Vincent & Bray [(1978) Biochem. J. 171, 639-647]. Signals typical of iron-sulphur clusters were also detected. In the oxidized enzyme these are believed to arise from a [3Fe-4S] cluster (g = 2.01) and in the reduced enzyme from an unusual low-potential [4Fe-4S]+ cluster (g1 = 2.054; g2 = 1.952; g3 = 1.878). The iron-sulphur centres were also studied in a 'high-catalytic-activity' form of the enzyme. Reduction with Na2S2O4 resulted in the formation of a complex signal with g values at 2.054, 1.952, 1.928, 1.903 and 1.878. The signal could be deconvoluted by reductive titration of the enzyme into two species (g1 = 2.054; g2 = 1.952; g3 = 1.878; and g1 = 2.036; g2 = 1.928; g3 = 1.903). The degradation of a [4Fe-4S] into a [3Fe-4S] cluster in the enzyme is suggested by these studies, the process being dependent on the method used to purify the enzyme. The addition of nitrate to the reduced enzyme results in the oxidation of Mo(IV) to Mo(V) and of all the iron-sulphur centres.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the chlorate reductase from Pseudomonas chloritidismutans.

A chlorate reductase has been purified from the chlorate-reducing strain Pseudomonas chloritidismutans. Comparison with the periplasmic (per)chlorate reductase of strain GR-1 showed that the cytoplasmic chlorate reductase of P. chloritidismutans reduced only chlorate and bromate. Differences were also found in N-terminal sequences, molecular weight, and subunit composition. Metal analysis and e...

متن کامل

Characterization of bacterial cytochrome cd(1)-nitrite reductase as one enzyme responsible for catalysis of nitrosation of secondary amines.

Bacterial formation of carcinogenic N-nitroso compounds may play a role in the etiology of human cancer. Biochemical and immunological studies in denitrifying bacteria (Pseudomonas aeruginosa) strongly support the identification of cytochrome cd(1)-nitrite reductase as the enzyme responsible for the catalysis of nitrosation through the production of nitric oxide or NO(+)-like species. Interesti...

متن کامل

Electron-paramagnetic-resonance studies on the molybdenum of nitrate reductase from Escherichia coli K12.

Studies on the respiratory nitrate reductase (EC 1.7.99.4) from Escherichia coli K12 by electron-paramagnetic-resonance spectroscopy indicate that its molybdenum centre is comparable with that in other molybdenum-containing enzymes. Two Mo(V) signals may be observed; one shows interaction of Mo(V) with a proton exchangeable with the solvent and has: A (1H) 0.9-1.2mT; g1 = 1.999; g2=1.985; g3 = ...

متن کامل

Chromosomal location and function of genes affecting Pseudomonas aeruginosa nitrate assimilation.

Seven known genes control Pseudomonas aeruginosa nitrate assimilation. Three of the genes, designated nas, are required for the synthesis of assimilatory nitrate reductase: nasC encodes a structural component of the enzyme; nasA and nasB encode products that participate in the biosynthesis of the molybdenum cofactor of the enzyme. A fourth gene (nis) is required for the synthesis of assimilator...

متن کامل

Demystifying EPR: A Rookie Guide to the Application of Electron Paramagnetic Resonance Spectroscopy on Biomolecules

Electron Paramagnetic Resonance (EPR) spectroscopy, also known as Electron Spin Resonance(ESR) especially among physicists, is a strong and versatile spectroscopic method forinvestigation of paramagnetic systems, i.e. systems like free radicals and most transition metalions, which have unpaired electrons. The sensitivity and selectivity of EPR are notable andintriguing as compared to other spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 224 2  شماره 

صفحات  -

تاریخ انتشار 1984